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Abstract

Reinforcing effects in an amorphous polyethylene matrix were estimated for spherical filler particles arranged either on a cubic lattice or

randomly in space. Attention was first focused on the effects of the type of arrangement of the particles on the microscopic properties of

the polymer chains. Specifically, Monte Carlo rotational isomeric state (MC-RIS) simulations were carried out to predict the effects of the

volumes excluded by the filler particles on the configurational distribution functions of the chains, and from these distributions the

elastomeric properties of the composites. The calculations were carried out for a range of particle sizes and particle volume fractions. As

expected, filler inclusions are found to increase the non-Gaussian behavior of the chains. The results were compared with those from small-

angle neutron scattering (SANS) experiments. In the case of arrangement on a cubic lattice, chains dimensions were always found to

decrease. In the randomly-dispersed filler arrangements, there were significant increases in chain dimensions relative to the unfilled system in

some instances, and the changes were in excellent agreement with the SANS results. The present simulations thus give further

encouragement to interpretations of chain deformations in filled systems in terms of volume exclusion effects from the nanoparticle

inclusions, including their dispersions and arrangements within polymer matrices.

q 2004 Published by Elsevier Ltd.
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1. Introduction

Many commercial polymeric materials are composites

and are successfully used in many demanding applications

[1–5]. In such composite materials, addition of rigid

particles to polymers can produce a number of desirable

effects, such as improvements in mechanical properties.

Such improvements are determined by (i) the properties of

the components, (ii) the shapes, natures of the dispersions,

and degrees of aggregation of the reinforcing particles

(iii) the morphologies of the system, and (iv) the nature of

the interfaces and interphases. An important property of the

interface, which can greatly affect mechanical behavior, is

the strength of the bonding between the host and the

dispersed phases. Thus, enhancement of the modulus of a

filled polymer results from complex interplays among the

properties of the individual constituent phases; the matrix

chains, the rigid inclusions, and the interfacial regions

[1–5].

There are various models for predicting the properties of

particulate-filled polymeric materials and the unusual

‘stiffening’ effects observed. Critical reviews of these

theories are given by Ahmed and Jones [6], Edwards [7],

and Wang [8]. In the terminologies in these models, the

reinforcement is determined by the interfacial energies [6,9]

and geometrical factors (namely, size, shape and volume

fraction of the filler) [6–10]. The proposed mechanisms for

the interactions between particulate fillers and the polymer

matrix include: steric interactions [9,11], formation of

temporary junctions [12], concentration of dispersions [13,

14], generation of filler ‘networks’ [15], and overlap

resistance of filler aggregates [16–18]. In related work,

Wu et al. [19] performed Monte Carlo calculations for two-

dimensional freely-jointed polymers in equilibrium with a

random lattice of obstacles. Also, based on a generic finite

element analysis, Gusev et al. [20–23] numerically
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identified morphologies that provided ultra high shear

moduli in multiphase materials comprising anisotropic,

arbitrarily shaped, and oriented phases.

Recent studies using small-angle neutron scattering

(SANS) are providing relevant information on filler-induced

deformations of polymer chains [17,24–26]. Of particular

relevance here is the neutron scattering studies by Nakatani

et al. on silica-filled PDMS [25,26]. When the chain

dimensions were approximately the same size as the filler

particles, their scattering results showed a decrease in chain

dimensions at all filler concentrations. Chains with larger

dimensions, however, showed increases in these dimen-

sions, at least at low filler concentrations. These exper-

imental results are in good semi-quantitative agreement

with earlier Monte Carlo simulations in which spherical

filler particles were placed either regularly (on a three-

dimensional cubic lattice), or irregularly (in random

arrangements throughout the volume in which the chains

were subsequently generated) [27,28].

Over the past few years, polymeric systems filled with

rigid nanoparticle inclusions have been the subject of a

number of computer simulation studies [20–23,27–42].

Those by the present authors and their colleagues have

focused on the nanoparticles deforming the matrix chains

through their excluded volume effects [27–35]. The

inabilities of the chains to penetrate the particles cause

their dimensions to be either extended or compressed

(relative to their initial dimensions in the absence of the

particles). These deformations obviously affect the end-to-

end chain distance distributions that are central to the

calculation of elastomeric properties [24–48].

Vacatello [36–40] carried out some relevant simulations

for dense polymer systems that gave results in disagreement

with the increases of chain dimensions predicted from the

earlier simulations and observed experimentally in the

neutron scattering studies. It was concluded that that

increased chain dimensions observed in neutron scattering

experiments could not be explained on the basis of excluded

volume arguments, and that simulations of filled polymer

systems had to be performed in melt systems having

realistic densities [36–40].

The fact that the two types of simulations gave different

results prompted the present investigation, which extends

some of the earlier simulations based on excluded volume

effects. It focuses first on the distribution PðrÞ of the end-to-

end vector of a polymer chain, which is one of its most

important characteristics [27–35,41–48]. This function

tends to have a Gaussian form for long flexible chains, but

the rigorous calculation of PðrÞ is complicated for shorter

chains, and even more so for polymer chains in the

environment of filler particles. As has been already

mentioned, if filler particles can cause the chains to be

either extended or contracted, this will of course also change

the force required for elastic deformations and thus elastic

moduli [27–35,42–45]. Excluded-volume simulations of

this type postpone treatment of other effects contributing to

filler reinforcement such as matrix–filler and filler–filler

interactions [27–35,42–45]. Thus, the present study

addresses only the influence of volume excluded by the

rigid nanoparticle inclusions as well as their mutual

dispersion in the matrix on the microscopic properties of

the matrix chain deformations. The distributions obtained

from the simulations will be used in the standard rubberlike

elasticity theory to estimate values of the modulus [27–35,

42–45]. At least qualitative comparisons will be made

between these simulated values of the modulus and the most

relevant experimental results.

2. The present theoretical model

The Monte Carlo rotational isomeric-state simulations

were performed for amorphous polyethylene (PE) chains

with degree of polymerization n ¼ 300 at a temperature

T ¼ 450 K. The three-state rotational isomeric state RIS

model was based on the usual form of the statistical weight

matrix [49–51]:

U ¼ ½uzh� ¼

1 s s

1 sc sv

1 sv sc

2
664

3
775 ð1Þ

with uzh ¼ expð2Ezh=RTÞ being the Boltzmann factor in the

energy Ezh for a pair of skeletal bonds with bond i 2 1 being

in the state z and ith bond in state h: R is the gas constant.

These discrete states occur at torsion angles f ¼ 08; 1208,

21208 corresponding to: trans, gaucheþ, and gauche2,

respectively. The statistical weight parameters used in the

calculations corresponded to Es ¼ 850 cal/mol and

Ev ¼ 1100 cal/mol with, in addition, c ¼ 1; and v ¼ 0

[49–51].

Details of the generation of Monte Carlo chains and the

modified Metropolis algorithm employed here are discussed

in greater detail elsewhere [27–35]. The apriori probability

matrix P and the conditional probability matrix Q have been

the subject of an elaborate numerical treatments and

detailed discussions [30–32].

Chains impinging on filler particles were discarded and

the simulations continued until N $ 50; 000 acceptable

Monte Carlo chains were accumulated. The resulting values

of the end-to-end vector r were placed into a histogram to

produce the desired end-to-end vector probability distri-

bution function Pðr=rmaxÞ; with rmax ¼ n‘0; where ‘0 is the

equilibrium bond length. This distribution function was

obtained by accumulating the numbers of Monte Carlo

chains having end-to-end distances within specified ranges.

The function Pðr=rmaxÞ was smoothed using cubic spline fits

[27–34]. The smoothing procedure was necessary for the

proper calculation of the stress-strain isotherms from the

Monte Carlo histogram [27–34,43–45].

These results can be used directly in the Mark–Curro

theoretical method [43–45] to calculate the elastic proper-
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ties of the chains from the distribution functions Pðr=rmaxÞ of

their end-to-end vectors. The distribution Pðr=rmaxÞ is

directly related to the Helmholtz free energy AðrÞ of a

chain having the end-to-end distance r by [43–45,51]

AðrÞ ¼ c 2 kT ln PðrÞ ð2Þ

where k is Boltzmann constant and c is a constant. In this

approximation, the three-chain model leads to the following

general expression for the elastic free energy change during

deformation [43–45,51]:

DA ¼ ðn=3Þ½AðroaxÞ þ AðroayÞ þ AðroazÞ2 3AðroÞ� ð3Þ

Here, n is the number of moles of chains in the network and

ro ¼ kr2l1=2o is the value of the root-mean-square (rms) end-

to-end vector of the chains. The deformation ratio at relative

to the dimension Lit at the start of the experiment is given for

the case of isotropic deformation by [51]

at ¼ Lt=Lit ð4Þ

Lit should be clearly distinguished from Lot (i.e. the length of

the sample in the unfilled reference state).

In the case of filled networks, however, the deformation

a relevant to the elastomeric matrix chains should be

replaced by an effective mean amplified extension ratio aeff

due to the hydrodynamic effects of the inclusions, i.e. the

disturbance of the strain distribution [52–54]:

aeff ¼ ða2 1ÞXeff þ 1 ð5Þ

For spherical inclusions, Xeff is a function of the volume

fraction y f of the inclusions and is given by [52–54]:

Xeff ¼ 1 þ 2:5y f þ 14:1y 2
f ð6Þ

Thermodynamics provides the equation for the nominal

stress f p (defined as the elastic force at equilibrium per unit

cross-sectional area of the sample in the undeformed state)

[43–45,51]:

f p ¼ 2Tð›DA=›aÞT ð7Þ

Consequently, f p is derived as a function ln Pðr=rmaxÞ; and

P0 ¼ d½ln PðrÞ�=dr: The smoothed function P0ðr=rmaxÞ;

together with the P0=P were obtained by cubic spline fits

[27–34,43–45]:.

f p ¼ 2ðnkTr0=3Þ½G
0ðr0aeffÞ2 a23=2G0ðr0a

21=2
eff Þ� ð8Þ

where GðrÞ ¼ ln PðrÞ; and Gð0wrÞ denotes the derivative

dG=dr: The IMSL subroutine ‘CSDER’ was used in the

numerical calculations of the derivative of the smoothed

function P0ðr=rmaxÞ; together with the relationship G0 ¼ P0=P:

The primary quantity of interest is the modulus or ‘reduced

stress’ defined by [51]

½f p� ¼
f p

a2 a22
ð9Þ

Since the modulus generally exhibits an unanticipated

dependence on a; it is frequently represented in terms of the

Mooney–Rivlin empirical equation

½f p� ¼ 2C1 þ 2C2a
21 ð10Þ

in terms of the constants 2C1 and 2C2 that are independent

of the deformation ratio a [51].

The numerical calculations were performed for PE

chains placed into a cubic lattice of spherical filler particles,

as is schematically depicted in Fig. 1. For purposes of

illustration, the calculated radius refv of a sphere represent-

ing the effective free volume available for the chains in the

lattice as a function of the volume fraction of filler y f is

represented in Fig. 2 for different radii rsph of the spherical

nanoparticles. Fig. 3(a) and (b) depicts the polymer chain of

interest now placed into a random arrangement of spherical

filler particles. In order to test one of the possible criticisms

of the earlier excluded-volume simulations [28], the

randomness and non-bias of the present simulations was

assured by frequently changing the nature of the particle

dispersion in the lattice (generally after the successful

generation of 200 chains).

The numerical calculations were performed for particles

of different radii, specifically rsph ¼ 1 to 50 nm, and for a

range of filler volume fractions (‘loadings’) y f ¼ 0:0025 to

0.6. In order to estimate the elastic properties, Monte Carlo

RIS (MC-RIS) calculations were first applied for the free

chains and then in the filled. Simulations were performed

mainly at 450 K. It should be mentioned that the glass

transition temperature Tg and the melting temperature Tm

for low-density PE are approximately 253 and 388 K,

respectively, [55].

A very large number of acceptable Monte Carlo chains

ðN ¼ 30; 000–50; 000Þ were generated to acquire a

Fig. 1. Schematic view of a three-dimensional cubic lattice of spherical

filler nanoparticles. Also shown is a polymer chain that has its origin and

orientation in the lattice randomly generated among the particles.
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sufficiently large statistical ensemble. In order to test

another of the possible criticisms of the earlier simulations,

the non-biased nature of the sampling was improved by

randomly generated the chain origins in the lattice. Also,

Euler’s matrices were employed in order to have random

orientations of chain axes during their generation. As was

done before, any chain configuration having segments that

overlapped with any of the lattice filler particles was

rejected. In the earlier simulations, the methylene groups

CH2 had been treated as united atoms having a radius of

0.2 nm [33,34]. In the present improved simulations,

however, the van der Waal’s radii of all atoms were taken

into consideration when checking for overlap between the

filler particles and the polymer chain being generated.

3. Results and discussion

3.1. Particles arranged on a cubic lattice

Figs. 4 and 5 show the distributions of the end-to-end

vector PðrÞ as a function of r=rmax for PE chains having 500

bonds generated within a cubic lattice arrangement of rigid

inclusions, having a range in volume fractions y f ¼

0:0025–0:6: In Fig. 4, the spherical filler nanoparticles

had a radius of 10 nm. For the purpose of clarity, only

representative results are depicted. Each curve is labeled

with the appropriate volume fractions y f ; and the results for

chains in the unfilled state are represented by the solid line.

As has been generally the case, the chains in the lattice of

spherical nanoparticles clearly manifest a shift to lower

values of r=rmax: Also, it is important to note that the

maximum becomes better defined than it is for the free

chain. Apparently, this serves as a clear indication that the

chains are compressed relative to the free chains in the

unfilled state. At lower values of volume fractions (cf.

y f ¼ 0:025–0:02), the distributions almost overlap entirely

with that for the free chain. This could easily be described in

terms of a preferential increase of the effective free volume

available for the chains, as shown in Fig. 2. Thus, the chain

dimensions would have been expected to increase.

Fig. 5 presents a clear demonstration of the effect of the

filler particle size on these changes. The magnitude of the

observed shift as rsph increases is far less than that observed

Fig. 2. The radius of a sphere representing the average effective free volume

accessible by the chains within a unit cell shown as a function of the volume

fraction of filler y f for spherical nanoparticles having the specified values of

the radius rsph:

Fig. 3. Schematic view of a three-dimensional lattice of randomly dispersed

small (a) and large (b) nanoparticles. Also shown is a polymer chain that

has its origin and orientation in the lattice randomly generated among the

spherical filler particles. Fig. 3(b) demonstrates how larger nanoparticles do

result in higher values of the effective free volume fraction accessible to the

chains than that provided by the smaller ones (Fig. 3(a)) at the same volume

fraction.
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for the smaller filler particles (4 nm). Such differences are

expected as a result of an increase of the lattice unit cell

dimensions and corresponding increases in the free volume

accessible to the chains with an increase in particle size,

when the volume fraction of the filler is kept constant. This

is also shown in Fig. 2. This clearly demonstrates the effects

of particle size on the matrix polymer chains.

Of course, all the curves in Figs. 4 and 5 corresponding to

higher loadings display significant deviations from that for

the free chains and from Gaussian behavior in general. In

other words, when the cubic unit cell dimension are greater

than the root-mean-square end-to-end distance kr2l1=20 of the

polymer chains, the effects of the volume exclusion by the

filler particles become negligible. As is readily apparent,

there is a decrease in the effective free volume preferentially

accessible to the chains with increase in the volume fraction

of inclusions y f or a decrease in the inclusion size. Recent

neutron scattering results are in excellent agreement with

these simulated dimensional changes [27,31–35]. Unique

distributions would be expected if the simulations were

extended to lattices with rsph , 2 nm. Unfortunately, most

of the generated chain conformations overlap with filler

particles and have to be rejected in this case, making the

computer time needed for such simulations unacceptably

long.

Fig. 6 presents values of the rms end-to-end distance as a

function of the volume fraction of inclusions y f ; (with y f ¼

0 corresponding to the unfilled material). The results show

that kr2l1=20 for chains in lattices with spherical particles are

significantly reduced in comparison to those in unfilled

lattices. Again, and as would be expected, values of kr2l1=20

for filler particles having initial rsph ¼ 20 nm are signifi-

cantly higher than those for spherical particles with initial

rsph ¼ 2 nm. These differences are expected as a result of an

increase in the unit cell dimensions for a fixed value of y f :

Most important, the results clearly demonstrate the effects

of particle size on the distributions of the end-to-end

vectors; at the same y f : Spheres having larger sizes lead to

an increase in the effective free volume accessible within a

unit cell.

The rms radii of gyration ks2l1=20 and the characteristic

ratio C1 ¼ kr2l0=n‘2
0 are given in Table 1. Values of the

radii of gyration ks2l1=20 and characteristic ratios C1 are

found to follow the same trends seen in Fig. 6. Table 2 gives

the corresponding results for random placements of the

particles.

Fig. 7 shows the stress f p=nRT further normalized by the

Fig. 4. Radial distributions PðrÞ of the end-to-end vector r obtained by

Monte Carlo simulations in a cubic lattice, shown as a function of the

relative chain extension r=rmax: In this figure and the following ones, the

results pertain to amorphous PE chains having 500 skeletal bonds, at 450 K,

in the presence of fillers having the specified values of the volume fraction

y f : Similarly, rsph denotes the radius of the nanoparticles. The particular

results shown here correspond to rsph ¼ 10 nm, and the solid line represents

the results for the unfilled matrix polymer chain.

Fig. 5. Radial distributions for the case y f ¼ 0:3 and the specified values of

rsph; in a cubic lattice.

Fig. 6. Root-mean-square (rms) end-to-end distances kr2l1=20 of the chains

described in Fig. 4 as a function of the volume fraction of the nanoparticles

having rsph ¼ 10 nm.
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Table 1

Numerical results (450 K) for polyethylene chains having 500 skeletal

bonds in a cubic lattice of spherical filler particles with diameters rsph.

y f
a refv

b (nm) kr2
0l

1=2c (nm) ks2
0l

1=2d (nm) C1
e

rsph ¼ 20 nm

0.00 0.00 9.09 3.69 6.63

0.005 94.26 9.17 3.69 6.66

0.01 74.82 9.11 3.69 6.65

0.02 59.38 9.13 3.70 6.68

0.05 43.75 9.10 3.69 6.63

0.10 34.73 9.09 3.68 6.61

0.15 30.34 9.08 3.68 6.60

0.20 27.56 8.98 3.65 6.46

0.30 21.70 8.93 3.63 6.39

0.40 17.89 8.81 3.59 6.21

rsph ¼ 10 nm

0.00 0.00 9.09 3.69 6.63

0.005 47.13 9.14 3.69 6.69

0.01 37.41 9.13 3.70 6.67

0.02 29.69 9.10 3.68 6.63

0.05 21.88 9.08 3.68 6.61

0.10 17.36 9.05 3.67 6.56

0.15 15.17 8.96 3.64 6.44

0.20 13.78 8.88 3.613 6.31

0.30 10.85 8.61 3.54 5.95

0.40 8.95 8.29 3.45 5.51

0.6 6.55 7.42 3.18 4.41

rsph ¼ 4 nm

0.00 0.00 9.09 3.69 6.63

0.005 18.85 9.13 3.69 6.68

0.01 14.96 9.13 3.69 6.68

0.02 11.88 9.06 3.67 6.58

0.05 8.75 8.97 3.64 6.45

0.10 6.95 8.81 3.59 6.22

0.15 6.07 8.54 3.50 5.84

0.20 5.51 8.29 3.41 5.51

0.30 4.34 7.62 3.18 4.66

rsph ¼ 2 nm

0.00 0.00 9.09 3.69 6.63

0.005 9.43 9.12 3.69 6.66

0.01 7.48 9.07 3.68 6.59

0.02 5.94 9.02 3.65 6.52

0.05 4.38 8.89 3.61 6.33

0.10 3.47 8.65 3.52 6.00

0.15 3.03 8.48 3.45 5.76

0.20 2.76 8.22 3.36 5.41

rsph ¼ 1 nm

0.00 0.00 9.09 3.69 6.63

0.005 4.71 9.11 3.69 6.65

0.01 3.74 9.01 3.66 6.50

0.02 2.97 8.99 3.65 6.48

0.05 2.19 8.89 3.60 6.34

a Volume fraction of filler.
b Radius of an effective free volume sphere accessible to the polymer

chain.
c Root-mean-square end-to-end distance (nm).
d Root-mean-square radius of gyration (nm).
e Characteristic ratio, kr2l0=n‘2:

Table 2

Results for the same system as in Table 1, but with the filler particles

randomly dispersed

y f
a refv

b (nm) kr2
0l

1=2c (nm) ks2
0l

1=2d (nm) C1
e

rsph ¼ 20 nm

0.0000 0.00 9.09 3.69 6.63

0.0025 118.76 9.04 3.66 6.55

0.005 94.26 9.01 3.65 6.50

0.01 74.82 9.03 3.66 6.53

0.02 59.38 9.01 3.65 6.50

0.05 43.75 9.02 3.65 6.52

0.10 34.73 9.00 3.64 6.49

0.15 30.34 8.92 3.63 6.38

0.2 27.56 8.93 3.62 6.39

0.3 21.70 8.86 3.60 6.29

0.4 17.89 8.80 3.57 6.21

0.5 15.18 8.58 3.51 5.90

rsph ¼ 10 nm

0.0000 0.00 9.09 3.69 6.63

0.0025 59.38 9.18 3.69 6.75

0.005 47.13 9.14 3.68 6.68

0.01 37.41 9.12 3.67 6.66

0.02 29.69 9.18 3.67 6.75

0.05 21.88 9.11 3.65 6.66

0.10 17.36 8.99 3.62 6.48

0.15 15.17 8.81 3.57 6.21

0.2 13.78 8.75 3.55 6.13

0.3 12.16 8.71 3.54 6.07

0.4 8.95 8.16 3.35 5.34

0.5 7.59 7.99 3.29 5.12

rsph ¼ 4 nm

0.0000 0.0000 9.09 3.69 6.63

0.0025 23.75 9.23 3.70 6.82

0.005 18.85 9.24 3.70 6.85

0.01 14.96 9.28 3.70 6.91

0.02 11.88 9.36 3.69 7.02

0.05 8.75 9.37 3.66 7.04

0.10 6.95 9.01 3.54 6.51

0.15 6.08 8.69 3.45 6.05

0.2 5.51 8.47 3.38 5.75

rsph ¼ 2 nm

0.00 0.0000 9.09 3.69 6.63

0.0025 11.876 9.57 3.76 7.34

0.005 9.4262 9.83 3.79 7.74

0.01 7.4816 10.29 3.86 8.48

0.02 5.9381 10.55 3.89 8.92

0.05 4.3753 10.83 3.91 9.39

0.075 3.8221 10.25 3.77 8.42

0.1 3.4726 9.96 3.69 7.95

rsph ¼ 1 nm

0.00 0.00 9.0940 3.69 6.63

0.0025 5.94 10.194 3.85 8.33

0.005 4.71 11.154 4.02 9.97

0.01 3.74 11.087 3.99 9.85

0.02 2.97 11.744 4.10 11.05

a Volume fraction of filler.
b Average radius of an effective free volume sphere accessible to the

polymer chain.
c Root-mean-square end-to-end distance (nm).
d Root-mean-square radius of gyration (nm).
e Characteristic ratio, kr2l0=n‘2:
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number n of chains as a function of the apparent

macroscopic elongation a: It was calculated from Eq. (8),

as is customarily done. In Fig. 8, the reduced modulus

½f p�=nRT is illustrated as a function of reciprocal elongation

a21; calculated according to Eq. (9). The representation is

that suggested by the Mooney–Rivlin relationship [51], and

the results are for the chains described in Fig. 4. The unusual

maxima and minima are pathological and are a clear

indication that a slight change in the shape of the

distribution function near r0 has a pronounced effect on

the stress–strain behavior. The effect might also be related

to the histogram method employed here. The proper

calculation of the distribution function near r0 might require

histograms with smaller intervals around r0 [27,31–35,

43–45].

In any case, at small strains an increase in the normalized

longitudinal modulus is observed for chains filled with

spherical nanoparticles (above that for the free chains). This

is shown in Fig. 8. The enhancement in the small-strain

modulus is estimated to be higher than 300%, and increases

proportionally with an increase in particle loading. All of

the isotherms in these figures show upturns in modulus as

elongation increases, and such non-Gaussian behavior is

clearly a result of the finite extensibility of the chains. More

specifically, these upturns are due to the rapidly diminishing

number of configurations at larger values of r: This is,

correspondingly, accompanied by significant decreases in

the entropy of the chains, with a corresponding increases in

½f p�: Such increases are more pronounced for composites

having higher y f : In agreement with a wealth of exper-

imental data, increases in modulus ½f p� above those for the

free chains is clearly apparent, in particular at small strains.

An increase in loading, y f ; results in a decrease in the unit

cell dimensions, at fixed rsph: As is demonstrated in Figs. 7

and 8, and as was expected from Fig. 4, chains in lattices

having higher particle loadings also show a decrease in the

elongation at which the upturn in the modulus occurs. This

is an expected result of the diminished values of kr0l: Again

with decreasing volume fraction y f (i.e. with increasing unit

cell dimension at fixed rsph), the nominal stress approaches

the limit of a free chain. In this connection, it is noteworthy

that the stress-strain behavior depends on both the volume

fraction and particle size, and subsequently on the specific

shape of the end-to-end distribution function near kr0l;
according to Eq. (8) [27–35,43–45]. Deviations from the

Mooney–Rivlin predictions can easily be attributed to slight

changes in the shape of the distribution function near kr0l
[27–35,43–45]. Even at equivalent values of kr0l; it has

been found that the shapes of the stress–strain curves could

be entirely different [27–35,43–45].

The main point here is that the moduli obtained are larger

than those for unfilled networks, in particular at low

extensions. Furthermore, it is clear that a slight change in

the particle size, and correspondingly in the unit cell

dimensions, has significant effects on the modulus. It should

be noted that for Gaussian chains the modulus ½f p�=nRT is

independent of elongation, and has a value of unity. One

should note that Gaussian-like behavior is expected to

prevail at lower elongations.

In Fig. 9, the modulus is shown as a function of the

effective elongation aeff .rather than the apparent elongation

a: As would be expected, when account is taken of the

inherent amplification of strain (overstrain) due to hydro-

dynamic effects accompanying the presence of particles, the

reduced moduli ½f p� approach that of the free chain,

regardless of the volume fraction of filler. Thus, the

simulations unambiguously demonstrate effects of the non-

uniform stress fields around the particles on the deformation

of the matrix chains.

3.2. Particles dispersed randomly

In this case, the PE matrix chains were introduced into a

Fig. 7. Normalized stress shown as a function of the elongation a; at the

start of the experiment, for the case rsph ¼ 10 nm and for the specified

values of y f ; in a cubic lattice.

Fig. 8. The comparisons made in Fig. 7, but now for the normalized moduli

shown as a function of the inverse elongation a21:
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random dispersion of non-overlapping spherical nanoparti-

cles. Figs. 10 and 11 shows the distributions obtained from

these numerical calculations, and Fig. 12 shows the chain

dimensions. The characteristic and most distinctive features

of Fig. 12 are the obvious increases in the root mean square

end-to-end (relative to those of the unfilled ones). In some

instances, the increase is substantial. It is clearly apparent

that the magnitude of the increase is strongly affected by the

volume fraction and/or the size of the nanoparticles. The

results obtained for the end-to-end distances show a

maximum before a decrease in values, with increase in

filler concentration. This is reflected in the distribution

functions resulting from these simulations as is shown in

Fig. 11. With decrease in nanoparticle size, the distribution

shifts to higher values of r=rmax; i.e., towards more stiffened

(extended) chain conformations with higher values of kr0l:

Such behavior is again expected in view of the inevitable

effective free volume accessible to the chains, as has been

already discussed.

In this context, it is important to note that the random

dispersion of inclusions in contrast to the regular arrange-

ment could lead to some aggregates with the development of

some chains of filler particles, even in the undeformed state

[15,53] Also, an increase in the concentration of inclusions

could lead to a network interpenetrating the polymer (‘filler

networking’) [15,53]. At higher loadings ðy f . 0:3Þ; the

inclusions become less diluted by the matrix chains, leading

to percolation behavior that has been widely documented

both experimentally and theoretically in the case of carbon

black [15,53].

Such results are in excellent agreement with the most

recent neutron scattering results. This is a clear indication

of changes in the accessible effective free volume with

changes in loading y f [27–35]. At sufficiently lower

Fig. 9. The comparisons made in Fig. 8, but now shown a s a function of

inverse effective elongation a21
eff that accounts for strain amplification

induced by the nanoparticle inclusions.

Fig. 10. Some of the comparisons made in Fig. 4, but now for chains

generated in a lattice of randomly dispersed non-overlapping spherical

nanoparticles.

Fig. 11. Some of the comparisons made in Fig. 5, but now for y f ¼ 0:1; in a

lattice of randomly dispersed non-overlapping spherical nanoparticles.

Fig. 12. The comparisons made in Fig. 6, but now for a lattice of randomly

dispersed non-overlapping spherical nanoparticles.
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loadings and smaller particle sizes, a considerable expan-

sion in chain dimensions is observed. This could be owing

to an inevitable substantial increase in the number of

inclusions as their size is decreased; at a certain volume

fraction y f (cf. Fig. 3(a)) [25–27–35]. Consequently, the

chain is forced to adopt more extended configurations that

results in a type of ‘strain amplification’, before the

application of mechanical deformation [24–35]. With an

increase in volume fraction y f of particles, it is apparent that

the nanoscopic inclusions could certainly aggregate and

interconnect. As a result, the effective free volume

accessible to chain trajectories between the obstacles

decreases drastically and more compact configurations

have to be adopted by the chains. Undoubtedly, this results

in compression of chain dimensions in order for a chain to fit

within a certain accessible volume [25–27–35]. Such

behavior is more pronounced with an increase in the

particle size and y f :

In Table 2, apparent and substantial increases are

observed in the rms radius of gyration. Values of the

characteristic ratio C1 of the chain dimensions relative to

those of a freely-jointed chain follow the same trend. Again,

this increase is strongly affected by the volume fraction of

the filler and/or the size of the particles. The results obtained

show discernible maxima before decreasing in value with

increase in filler concentration. Simulations showing the

general trend of reduction in chain dimensions will be

presented elsewhere. They are consistent with our previous

results [27,31–35] and with those recently reported by

Vacatello [36–40].

4. Conclusions

In summary, it should be emphasized that only certain

volume fractions and dimensions of the nanoparticles result

in an increase in chain dimensions. This is quite important in

efficient utilization of nanofillers in polymeric systems. In

addition, our new results provide further support to those

observed in neutron scattering experiments, specifically an

increase followed by a decrease in chain dimensions. This

provides further evidence regarding the efficiency and

sensitivity of single-chain simulations in characterizing

effects of filler environments on host elastomeric chains.

These simulations are considered more accurate since the

detailed internal structure of the chain units is not neglected,

as is generally the case in dense simulations.

In addition, the numerical results presented are in

qualitative agreement with experimental values of moduli

reported in the literature for a wide range of filled systems

[4,6]. Quantitative comparisons are difficult in view of the

fact that the present simulations are concerned only with

effects of volumes excluded by the filler particles.

In a more rigorous and comprehensive treatment of the

this complex phenomenon of reinforcement, it is essential to

focus on mechanisms of filler–matrix interactions that are

dependent on the detailed structure of the surface as well as

filler–filler interactions that come into play with increased

deformation. A combination of micromechanics of compo-

sites, mesoscopic modeling, and perhaps atomistic model-

ing would provide a unified molecular understanding and

approach of the very complex behavior of multiphase

composites. There are now concerted efforts towards that

very goal [27–42,56,57].
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